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Higher-order probabilistic perceptrons as Bayesian inference engines
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An explicit structural connection is established between the Bayes optimal classifier operating onK binary
input variables and a corresponding two-layer perceptron having normalized output activities and couplings
from input to output units of all orders up toK. With suitable modification of connection weights and biases,
such a higher-order probabilistic perceptron should in principle be able to learn the statistics of the classifica-
tion problem and match thea posteriori probabilities given by Bayes optimal inference. Specific training
algorithms are developed that allow this goal to be approximated in a controlled variational sense. An appli-
cation to the task of discriminating between stable and unstable nuclides in nuclear physics yields network
models with predictive performance comparable to the best that has been achieved with conventional
multilayer perceptrons containing only pairwise connections.@S1063-651X~99!10205-8#
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I. INTRODUCTION

The purpose of this paper is to establish and explo
structural relationship between feedforward neural netwo
of a certain type and Bayes’ rule of inference. This conn
tion was already present in seminal form in the original bo
of Minsky and Papert@1# and is quite near the surface in th
classic work of Duda and Hart@2#. A similar investigation
was made more recently by Stolorzet al. @3#, based on a
Bahadur decomposition@4# of the class-conditional probabil
ity. Among other contemporary works exploring interesti
relations and comparisons between neural networks
Bayesian statistics@5–16#, those of Rucket al. @9#, Wan
@10#, and Richard and Lippmann@11# are most relevant to
our considerations. These authors show that conventi
neural-network techniques yield architecture-limited a
proximations to thea posterioriprobabilities of Bayes opti-
mal classifiers. Here we shall examine the structure of
output generated by a two-layer perceptron that involves~i!
normalized, soft-maximum ~soft-max! activation or
‘‘squashing’’ functions and~ii ! arbitrary higher-order cou
plings to each output unit from the inputs, along with t
standard complement of biases and pairwise connecti
Such systems will be called higher-order probabilistic p
ceptrons~HOPPs!. For binary inputs and finite input an
output spaces, it will be demonstrated that the finite HO
architecture is sufficiently general to embody the full sta
tical correlations inherent in the Bayesian approach@2# to
classification problems. Appealing to the formal results fro
Refs.@9–11# on the training of feedforward networks to a
proximate Bayesian inference, we develop supervised le
ing rules which, given an adequate body of training e
amples, will enable HOPP networks to produce clo
estimates of Bayesiana posterioriprobabilities.

Neural networks are of fundamental interest within ph
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ics as archetypes of dynamical and statistical systems
can learn by example, compute, and perform statistical in
ence. Their conceptual importance will grow as informati
theory and Bayesian statistics assume greater roles w
mainstream physics. A more practical facet of neural n
works is seen in their emergence as effective tools for d
analysis in astronomy and high-energy physics and for
statistical modeling of complex systems such as prote
genes, and nuclei@17,18#. The present investigation is con
cerned with both formal and applied aspects of neu
network theory.

In previous work @18–22#, custom-tailored multilayer
feedforward neural networks have been applied success
to a variety of classification and function approximatio
problems in nuclear physics. With the proton and the neut
numbers as binary-encoded input variables, global netw
models have been constructed that capture the statis
regularities of the stability-instability dichotomy@19–21#,
ground-state spins and parities@17,21,20#, atomic masses
@18–21#, and branching probabilities for different deca
modes @22#. Networks trained with error-backpropagatio
schemes@23–26# based on gradient-descent minimization
appropriate objective functions can achieve predictive ac
racy competitive with that of traditional phenomenologic
models. Continuing in a similar vein, we shall use t
stability-instability classification problem as a test of t
practicality and the generalization abilities of higher-ord
probabilistic perceptrons. In contrast to convention
multilayer networks with exclusively pairwise connection
allowance will be made for the presence of feedforward c
nections of any order between input and output units.

Formal analysis of the properties of HOPP networks
conducted in Secs. II–VI. In Sec. II we introduce the sta
dard pattern-classification problem and recall the Bayes
strategy for its solution. The higher-order probabilistic pe
ceptron is defined in Sec. III, and its structural relationship
Bayes’ rule of inference is delineated in Sec. IV. Explic
formulas linking the network weights to the priors and cla
6161 ©1999 The American Physical Society
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6162 PRE 59CLARK, GERNOTH, DITTMAR, AND RISTIG
conditional probabilities that enter Bayes’ rule are given
Sec. V. Section VI collects a number of remarks intended
part, to illuminate the importance of the structural ident
established in Sec. IV. The remainder of the paper is c
cerned with actual implementation of HOPP networks
‘‘Bayesian inference engines.’’ Learning algorithms for t
determination of HOPP connection weights are develope
Sec. VII, based on mean-square-error and relative-entr
objective functions. The results of numerical application
HOPP networks to the nuclear stability-instability discrim
nation problem are presented and discussed in Sec. VII
Sec. IX, concluding remarks are directed to the optimizat
of HOPP architectures and comparisons with traditio
multilayer models.

II. PROBLEM FORMULATION AND BAYESIAN
DECISION THEORY

In the standard pattern-classification problem@2,11#, one
faces the task of assigning individual patternsx
5(x1 ,•••,xK) of finite length K to one of L classesl
51, . . . ,L. The ‘‘input’’ variablesxk may be continuous o
binary. However, the analysis to be performed in Sec.
will be restricted to the binary case, i.e.,xkP$0,1% for k
51, . . . ,K, so that the input patterns are bit strings. In
more general formulation of the classification problem
given input pattern may be assigned to more than one
egory l. Aside from peripheral comments in Sec. VI, w
shall not be concerned with this elaboration.

The Bayesian approach to the standard classifica
problem@2# is explicitly probabilistic and rests on the con
struction of thea posterioriprobability P(lux) that the class
is l if the input pattern is known to bex. The probability of
error is minimized by choosing the classl for which P(lux)
assumes its largest value, a decision principle which defi
the Bayes optimal classifier. The a posteriori probability is
constructed via Bayes’ rule

P~lux!5
p~xul!P~l!

p~x!
, ~1!

in terms of the class-conditional probability~or likelihood!
p(xul) that the pattern isx when the category is known to b
l and thea priori probability P(l) of finding l. The de-
nominator p(x)5(m51

L p(xum)P(m) guarantees tha
(l51

L P(lux)51, as required for a probability distributio
over exhaustive outcomes.@Strictly, of course,p(xul) is a
probability density rather than a probability in the case t
the input variablesxk are continuous.#

Within this framework, one may distinguish two types
classification problems, namely,deterministicand probabi-
listic. In a deterministic problem, knowledge of the inp
vector x is in principle sufficient to determine the classl
unambiguously, i.e., there exists a mappingn(x):x→n from
the set of input patternsx into the set of output classesn
51, . . . ,L. In Bayesian terms, there is no inputx for which
the distributions or densitiesp(xul) corresponding to two or
more different classesl are simultaneously nonzero. Clearl
P(lux) should reduce todl,n(x) . The problem studied in the
second half of the paper, discrimination between stable
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unstable nuclides based on specified proton and neu
numbers, is actually of this type.

On the other hand, aprobabilistic classification problem
is one in which additional information beyondx, not pro-
vided or unattainable in principle or in practice, is required
determine the class with certainty. In this situation, the
does not exist a mappingn(x) from input patterns to outpu
classes, andp(xul) can be nonzero at the samex for differ-
ent l. ~No commitment need be made regarding the char
ter of the additional variables that influence the proper cl
assignment in a given occurrence of the patternx. These may
or may not be random variables. The problem may be pro
bilistic without being stochastic@27#.! The task of predicting
protein secondary structure addressed in Refs.@28–30,3# is
of this kind. Although in principle a full knowledge of the
sequence of amino acid residues should determine
secondary-structure configuration~a helix, b sheet, or coil!
in which each residue participates, the prediction is to
made on the basis of the portion of the sequence withi
restricted window surrounding the target residue. In ea
such prediction, the portion of the sequence outside the w
dow is effectively unknown, although it is perfectly definit
~Of course, the working assumption in such studies is t
the unseen part of the sequence has little influence on
secondary-structure assignment.!

The clean distinction of problem types drawn above b
comes muddy when one is confronted with typical re
world problems, where~i! in the deterministic case, the func
tion n(x), although existing in principle, is unknown,~ii ! in
the more general case of probabilistic classification, the c
ditional densities or probabilitiesp(xul), as well as the
priors P(l), are unknown.

The Bayesian prescription itself loses some of its lus
since the ingredients on the right-hand side of Bayes’ rule~1!
must beestimated. ~An additional real-world complication is
that some of the inputsxk supplied to the classifier may b
irrelevant for the classification decision, or redundant.!

Whether one uses neural-network modeling or some m
conventional method such as Parzen windows@2#, the esti-
mation process is normally based on a finite training sam
~a set of assignments of training patterns to their correspo
ing classes!. One imagines that thea priori distribution
P(m) has been sampled to generate a particular classl, and
then the class-conditional density or distributionP(xul) has
been sampled to produce an inputx. In the case of determin
istic classification, the stated aim is usually to estimate,
approximate, the mappingn(x) rather than thea posteriori
probability, and again the process of approximation of
target quantity involves extraction of the relevant inform
tion from a finite set of training samples. In general, limit
tions of both the estimation method and the training set w
preclude complete precision in the reproduction of the p
formance of the ideal Bayes classifier or in the reconstruc
of the deterministic map. In a neural-network approa
shortcomings of the estimation method may stem from
inadequate architecture or an inadequate training algorit
In the next section, we introduce a type of neural netwo
which, in principle, overcomes the architectural limitation

III. HIGHER-ORDER PROBABILISTIC PERCEPTRONS

Definition. A higher-order probabilistic perceptron is
two-layer feed-forward neural network characterized as
lows.
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~1! The input layer consists ofK units ~labeled k
51, . . . ,K) whose activitiesx1 , . . . ,xK register the compo-
nents of a given pattern vectorx.

~2! The output layer containsL units ~labeled l
51,•••,L in a 1-1 correspondence with the pattern class!
whose activitiesy1(x), . . . ,yL(x) are to be computed from

yl~x!5
eul(x)

(
m51

L

eum(x)

, ~2!

whereul is the net stimulus to the output unitl from the
units of the input layer. With the ‘‘soft-maximum’’ activa
tion or ‘‘squashing’’ function~2!, the output activitiesyl(x)
constitute a probability distribution over possible outcom
l—they lie on the interval@0,1# and sum to unity. This
choice of squashing function has been employed by a n
ber of authors~see, e.g., Refs.@3,10,22#!.

~3! Each output unitl receives synaptic connections,
strengthwl,k1•••km

, from all distinct combinationsk1•••km

of inputs, with the orderm running from m51 to m5K.
Accordingly, the stimulusul appearing in Eq.~1! assumes
the form

ul~x!5wl,01(
i 51

K

wl,ixi1 (
i , j 51

K

wl,i j xixj

1 (
i , j ,k51

K

wl,i jkxixjxk1•••1wl,12 . . .Kx1x2•••xK ,

~3!

where we have added a bias termwl,0 . The indicesi, j, and
k are summed over the range 1, . . . ,K, subject to the indi-
cated restrictions. Note that a given couplingwl,k1 . . . km

does
not come into effect unlessall of the transmitting units
k1 , . . . ,km have nonzero activities.~In the case of binary
input patterns, all the transmitting units must be ‘‘on.’’! The
biaswl,0 may be viewed as measuring the strength of a c
nection to unitl from an effective external field and treate
as a coupling of orderm50. The number of bias and weigh
parameters associated with each inputl is thus (m50

K (m
K)

52K.
The HOPP system is aperceptronsince it is a layered

arrangement of neuronlike units with feed-forward conn
tions from one layer to the next. Activation of the input un
in a given pattern produces a set of output activities rep
senting a ‘‘percept’’ associated with that pattern. More es
cially, the pattern may be assigned to a particular classl by
invoking a ‘‘winner-take-all’’ rule—the network is consid
ered to have chosen classl if the corresponding output uni
is the most strongly active. The HOPP system is cal
probabilistic because specification~2! for the squashing
function of the output units allows their activities to be i
terpreted as a probability distribution over theL classesl. It
is a higher-order network because the assumed two-lay
architecture, specified by Eq.~3!, incorporates not only pair
wise connections from input to output units~as in the el-
ementary perceptron@31,1#!, but all higher-order connection
consistent with the given number of inputs. The generic s
s
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tem havingL output units may be viewed as a set ofL
single-output HOPP network elements that operate indep
dently of one another—exceptas constrained by the cond
tion (lyl(x)51 imposed by the form~2! for the activation
function.

IV. THE BAYES CONNECTION

We now develop a structural relationship between HO
networks and Bayesian classifiers, specializing to the cas
binary input patternshavingxkP$0,1% for k51, . . . ,K.

Theorem. With a suitable choice of its synaptic coupling
wl,k1•••km

of all orders fromm50 to m5K, a higher-order
probabilistic perceptron can reproduce thea posterioriprob-
abilities provided by the Bayes optimal classifier. As a c
ollary, the minimum probability of misclassification~mini-
mum error rate! is then achieved by imposing a winner-tak
all decision at the output layer.

The validity of this theorem rests on~i! Bayes’ rule of
inference, ~ii ! a product decomposition of the clas
conditional probabilities entering Bayes’ rule, and~iii ! the
simple act of identifying, for eachl, the output activity
yl(x) of the HOPP with the Bayesa posteriori probability
P(lux) that patternx belongs to classl.

Proposition.TakeK53 for simplicity of expression. It is
proposed that the class-conditional probability admits a pr
uct decomposition of the form

p~xul!5r1~x1ul!r1~x2ul!r1~x3ul!r2~x1x2ul!

3r2~x1x3ul!r2~x2x3ul!r3~x1x2x3ul!, ~4!

where all factors are positive semidefinite and together p
serve 0<p(xul)<1. This form has an obvious extension
arbitrary integralK. Specifically, a factorrm(xk1

•••xkm
ul) is

present for every distinct combination ofm arguments
xk1

, . . . ,xkm
taken from the set$x1 , . . . ,xK%, with m run-

ning from 1 to K. The order chosen for the argumen
xk1

, . . . ,xkm
is irrelevant, but theK!/ @m!(K2m)! # factors

for given m may be different functions of their argument
~For the sake of an uncluttered notation, these different f
tors will be distinguished only by the labels on their arg
ments.!

In practice such a decomposition~for arbitrary integralK)
may be regarded as an identity. Its utility then hinges on
complexity of the decision tree of the problem at hand—
the possibility of accurate representation ofp(xul) by a rela-
tively small number of factors in the general product. If a
factors except the first three on the right-hand side of Eq.~4!
are approximated by unity, one has the familiar hypothe
@1# that all input components are independent. The indep
dence hypothesis, which defines thenaive Bayes classifier, is
often made in connecting feedforward neural nets with Ba
sian inference@1–3#.

The product decomposition of the class-conditional pro
ability p(xul) has a prominent counterpart in the structure
wave functions in quantum many-body physics. In particu
the ground state of a collection of indistinguishable boso
has an exact Feenberg product representation@32,33# in
terms of one-body, two-body, three-body,. . . , factors re-
flecting the influence of a mean field and the existence o
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6164 PRE 59CLARK, GERNOTH, DITTMAR, AND RISTIG
hierarchy of interparticle correlations. The structural analo
with Eq. ~4! and its extensions to higherK is conceptually
useful in spite of the fact that the wave function for the Bo
system is symmetrical in all particle coordinates, wherea
the HOPP system the output unitsl play a special role as
receptors of stimuli and the input units are distinguisha
from one another.

Following the lead of variational approaches to quant
many-body problems@35#, it is natural to investigate the con
vergence of successive approximants top(xul) in which
higher-order factorsrm.M(x1•••xmul) are set equal to
unity, for M51,2, . . . . Thedecomposition exemplified by
Eq. ~4! is more general than the product representation u
by Duda and Hart@2# to generate the Chow expansion@36#.
Curiously, the Duda-Hart representation has a struc
analogous to that of the wave function used to model
mion pairing in superconductors@34#.

Pursuing the analogy with correlated many-body wa
functions somewhat farther, the hidden units in multilay
neural networks with only single-unit biaseswl,0 and pair-
wise or ‘‘two-body’’ couplingswl,i may be interpreted a
the neural-network counterparts of the auxiliary ‘‘shado
particle’’ variables in shadow wave functions@37#, in which
real particles, shadows, and particles and shadows are c
lated with each other exclusively via two-body correlati
factors. The auxiliary shadow variables in such many-bo
wave functions mimic, to some degree, the existing high
body correlations between the real particles. In a sim
vein, the pairwise connections to and from the hidden u
in multilayer networks take over tasks performed by high
order connections in HOPP architectures.

It will be helpful to adopt a special notation for the valu
taken by ther factors in Eq.~4!:

r1~x151ul!5r1,l , r1~x150ul!5r 1̄,l ,

r2~x151,x251ul!5r12,l , r2~x150,x251ul!5r 1̄2,l ,

r2~x151,x250ul!5r12̄,l , r2~x150,x250ul!5r 1̄2̄,l ,

and similarly for higher-order factors, e.g.,

r3~x151,x250,x351ul!5r12̄3,l ,

r3~x150,x251,x350ul!5r 1̄23̄,l .

Then we may, for example, expressr3(x1x2x3ul) as

r3~x1x2x3ul!5r123,l
x1x2x3r

123̄,l

x1x2(12x3)
r

12̄3,l

x1(12x2)x3

3r
1̄23,l

(12x1)x2x3r
12̄3̄,l

x1(12x2)(12x3)

3r
1̄23̄,l

(12x1)x2(12x3)
r

1̄2̄3,l

(12x1)(12x2)x3

3r
1̄2̄3̄,l

(12x1)(12x2)(12x3)
. ~5!

Identification. The crucial step in forging the stated co
nection between neural networks and Bayes inference i
identify the Bayesa posteriori probability for each classl
with the activity yl of the neural-network output unit as
signed to that class:
y

e
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e
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e
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re-

y
r-
r
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-

to

P~lux!5
p~xul!P~l!

(
m51

L

p~xum!P~m!

5yl~x!5
eul(x)

(
m51

L

eum(x)

. ~6!

We make the further identification

ul~x!5 ln@p~xul!P~l!#5 ln p~xul!1 ln P~l! ~7!

and calculate lnp(xul) from the product expansion~4!:

ln p~xul!5 ln r1~x1ul!1 ln r1~x2ul!1 ln r1~x3ul!

1 ln r2~x1x2ul!1 ln r2~x1x3ul!1 ln r2~x2x3ul!

1 ln r3~x1x2x3ul!. ~8!

After some routine algebra based on the above definiti
and representations such as Eq.~5!, the result forul(x) can
be cast in the advertised form~3! specific toK53. Thus, the
stimulus ul is composed of a bias of output unitl plus
singlet, doublet, and triplet stimuli to unitl from the units of
the input layer~i.e., feedforward couplings of orders 0, 1,
and 3!. Extension of the Bayes connection to arbitraryK is a
straightforward exercise.

V. EXPLICIT EXPRESSIONS

The explicit expressions for the biaseswl,0 and couplings
wl,i , wl,i j , wl,i jk , etc., are rather complicated, reflec
ing the combinatoric explosion of terms for growingK.
However, a very interesting feature emerges: the bias or
teractionwl,k1k2 . . . km

of order m50,1,2, . . . ,K contains a
contribution from every orderq in the product expansion
with m<q<K, i.e., from all therq(•••ul) factors havingq
in the indicated range. This feature is expressed in the
pansions

wl,05 ln P~l!1 (
q51

K

wl,0
(q) , wl,i5 (

q51

K

wl,i
(q) ,

wl,i j 5 (
q52

K

wl,i j
(q) , wl,i jk5 (

q53

K

wl,i jk
(q) , etc. ~9!

Complete to orderq53 in the product expansion ofp(xul),
we find

wl,0
(0)5 ln P~l!, wl,0

(1)5(
i 51

K

ln r ī ,l ,

wl,0
(2)5 (

i , j 51

K

ln r ī j̄ ,l , wl,0
(3)5 (

i , j ,k51

K

ln r ī j̄ k̄,l ,

wl,i
(1)5 lnS r i ,l

r ī ,l
D , wl,i

(2)5(
j 51

K

lnS r i j̄ ,l

r ī j̄ ,l
D ,

wl,i
(3)5 (

j ,k51

K

lnS r i j̄ k̄,l

r ī j̄ k̄,l
D ,
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wl,i j
(2) 5 lnS r i j ,lr ī j̄ ,l

r i j̄ ,lr ī j ,l
D , wl,i j

(3) 5 (
k51

K

lnS r i j k̄ ,lr ī j̄ k̄,l

r i j̄ k̄,lr ī j k̄,l
D ,

wi jk ,l
(3) 5 lnS r i jk ,lr i j̄ k̄,lr ī j k̄,lr ī j̄ k,l

r ī j̄ k̄,lr i j k̄ ,lr i j̄ k,lr ī jk,l
D . ~10!

These formulas entail the use of definitions of the kind

r215r12, r325r23, r315r13, r 2̄15r12̄ ,

r 3̄25r23̄ , r 3̄15r13̄ ,

r21̄5r 1̄2 , r32̄5r 2̄3 , r31̄5r 1̄3 , r12̄35r132̄ ,

r 1̄23̄5r21̄3̄ , etc.,

and the convention that anyr . . . with coincident indices
~ignoring bar tags! vanishes. It is permissible to interchang
two indices on ar . . . without disturbing the association o
bars with indices, so as to obtain another name for the s
quantity that is more convenient for presenting the results
the analysis. In deriving the above formulas we have
made specific use of the property thatr2(x1x2ul) should not
be decomposable into a product of two independent o
input factors, and other similar restrictions.

The result ~9! collecting higher-order contributions t
lower-order couplings has a potentially important con
quence for comparisons of feedforward neural networks
naive Bayesian classifiers. Structurally, the naive Bayes c
sifier, predicated on the independence hypothesis, is equ
lent to the elementary perceptron@1#, which has only input
and output layers and output units with only biaseswl,0 and
pairwise incoming connections with weightswl,i . Yet the
latter system may actually be superior in practice wh
trained on the real—correlated—data. The point is that
trained biases and pairwise interactions will in general
clude some effects of the higher-order correlations, i.e., t
will incorporate some contributions from the facto
r2 ,r3 , . . . ,rK in the product expansion of the clas
conditional probability. This feature is also present in t
analogous treatment of Stolorzet al. @3# based on the Baha
dur expansion.

VI. FORMAL AND PRACTICAL REMARKS

In this section we explore briefly some of the implicatio
of our results and related findings.

Remark 1.We envision the following operation of th
two-layer HOPP as an inference machine: in a train
phase, the HOPP learns the statistics of the problem, w
determine its weight parameters; in the computational ph
it effectively applies Bayes’ rule~1!.

Remark 2.The couplings and biases of a HOPP netwo
may be determined by a training scheme that minimize
well-chosen objective~or ‘‘cost’’ ! function. Reasonable
choices of objective function include the squared error a
the Kullback-Leibler distance or ‘‘relative entropy’’@38#,
both computed over a set of training patterns. There e
strong results relating the computational output of suita
trained neural-network classifiers—notably, perceptrons—
the estimation of conditional probabilities, and indeed to
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estimation of Bayesian posterior probabilities. These res
have been reviewed and augmented by Richard and L
mann @11#. The primary focus is the standard classificati
problem defined in Sec. II, which the latter authors wou
call a ‘‘1 of L ’’ problem ~meaning that the target outpu
associated with the correct class is unity and all other ta
outputs are zero!. For this case, Rucket al. @9# have proven
~see also Ref.@10#! that in the limit of an infinite, unbiased
training sample, minimization of the mean-square deviat
of actual output activities from their targets~over output
units and patterns! also serves to minimize a mean-squa
error measure of the departure of these output activities f
the corresponding Bayes optimal discriminant functions.
alternative statement@11# is that under the same assumptio
when network parameters are chosen to minimize a squa
error cost function, the outputs of the trained network p
vide direct estimates of the posterior probabilities of t
Bayes classifier so as to minimize the mean-squared est
tion error. Moreover, for the more general classificati
problem in which the desired outputs are binary and
necessarily ‘‘1 ofL ’’ @11#, the actual outputs of the traine
network estimate the conditional expectations of the des
outputs so as to minimize the mean-squared estimation e
~It should be pointed out that the proofs given in Re
@9–11#, unlike the demonstration of the Bayes structu
equivalence for HOPP systems presented in Sec. IV, do
require that the input patternsx have binary components.!

Corresponding results hold when the cross-entropy ob
tive function is employed. The argument given in Ref.@11# is
readily adapted to establish the same properties for
Kullback-Leibler distance~also called the relative entropy!.

Remark 3.In the context of the HOPP architecture, th
approximation to the Bayes ideal that is at the heart of
results summarized in remark 2 can in principle be arbitra
good, since the theorem of Sec. IV shows that the assu
hierarchy of couplings furnishes sufficient structural co
plexity to reproduce the Bayes recipe. However, one sho
be aware of a number of practical complications~as well as
other caveats aired by Barnard@15#!.

~a! It is not clear how one can actually attain the glob
minimum of the mean-square error if there are many lo
minima of the error surface.

~b! The requirement of an infinite, unbiased trainin
sample is a strong one, and the quantitative consequenc
deviations from this ideal need to be investigated.

~c! The implied minimization of the mean-square dev
tion of perceptron outputs from the corresponding Bayes
timal discriminant functions may not be sufficiently incisiv
Consider the two-class problem for the case of continu
inputsxPX, in the formulation of Ref.@9# where a percep-
tron with a single outputF(x) is trained to produce11
when the input is from class 1 and21 when it is from class
2. The mean-square error measure takes the form

E
X
@F~x;w!2g0~x!#2p~x!dx, ~11!

whereg0(x)5P(l51ux)2P(l52ux) is the Bayes optimal
discriminant and the squared deviation is appropriat
weighted with the probability densityp(x) of the input vec-
tor. The output of the network will most closely approxima
the Bayes discriminant function wherep(x) is large. Yet if
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the aim is to minimize the probability of misclassificatio
the fit should be best on the decision boundaries of the c
sifier, where g0(x)50 ~two-class problem! and P(lux)
5P(mux), l,m51, . . . ,L ~general case!. As demon-
strated by Rucket al. @9#, these conditions do not general
occur wherep(x) is large.

Remark 4.Higher-order perceptrons enjoy universal co
putational properties quite apart from the Bayesian prob
listic view generally adopted in this paper. In particular, t
HOPP system defined in Sec. III is a perfect generaliza
instrument for deterministic classification problems invo
ing K binary inputs andL output classes. In this case, th
L32K weights associated with the HOPP architecture can
chosen to match an arbitrary Boolean target function.

Moving beyond pattern classification tasks, it is also e
dent that the basic HOPP architecture—an input la
coupled to an output layer via connections of arbitrary or
consistent with the number of inputs—should have great u
ity in the more general class of problems considered in fu
tion approximation or regression~prediction of real vari-
ables! @39#. Target outputs as well as inputs and actu
outputs may be continuous as well as discrete, and the p
lem may be either ‘‘deterministic’’ or ‘‘probabilistic’’ ac-
cording to transparent extensions of the meanings assig
to these terms within pattern classification. Again, the sys
has the ability to capture correlations between the input v
ables of all orders, although a probabilistic interpretation
output activities~and, correspondingly, the adoption of so
maximum output functions! is in general inappropriate.

We note that Carmesin@40# has introduced ‘‘multilinear’’
neural networks containing, by definition, couplings of
orders fromN input neurons toN output neurons. In contras
to the familiar case of perceptrons with one or more hidd
layers~but only pairwise couplings!, a convergence theorem
for the back-propagation learning algorithm can be prov
for this system, in which case back-propagation reduce
the so-called ‘‘delta’’ rule of Widrow and Hoff@41,23#.
Given any input-output mapping, there exists a multiline
network that reproduces it, and back-propagation train
produces convergence to such a network in a finite num
of steps@40#.

Remark 5. There is the obvious danger, in structures
volving higher-order interactions, that the combinatorial e
plosion of weight parameters will overwhelm available co
putational resources and preclude tractable application e
for relatively modest numbersK of input units. Two com-
ments may be made to put this danger in perspective.

~a! If many higher-order correlations among the inp
variables are indeed present in the problem under cons
ation, the difficulty is intrinsic and must also be faced wh
attacking the problem using multilayer, pairwise-coupl
feedforward networks. Accurate modeling will then gen
ally demand large numbers of hidden units, optimally
ranged in a single or multiple hidden layers. The HO
scheme has the virtue of making all higher-order correlati
explicit.

~b! Even though the number of input variables may
large in a given real-world problem, it will often be the ca
that only a few higher-order correlations are important,
that most of the weight parameters in the general HOPP
chitecture are zero or negligible. A knowledge of the pro
s-
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lem domain may permit identification and elimination
these parameters. In Sec. VIII we shall propose and te
systematic procedure that may serve to reduce the param
costs of HOPP networks to manageable proportions.

Remark 6. Another thrust in the articulation of Bayesia
probability theory with neural networks, complementary
that explored here, involves the inference of the adap
weight parameters or, more generally, treatment of the se
in model space as an inference problem, based in any e
on the given training data@13,14#. In Bayesian back-
propagation@13#, approximate Bayesian methods are appl
to the determination of such statistical components of ba
propagation as choosing a cost function and penalty term~or
regularizer!, pruning unimportant weights, estimating unce
tainties in the weight parameters, predicting ‘‘out-o
sample’’ patterns, estimating generalization error, and co
paring different network structures. A salient benefit
Bayesian model comparison is that it naturally incorpora
Occam’s razor@14#. Exploitation of this set of approache
may enhance the performance of higher-order~or ‘‘multilin-
ear’’! networks.

VII. TRAINING ALGORITHMS

In preparation for a numerical demonstration of the ca
bilities of the HOPP networks as classifiers, we now deve
supervised learning algorithms based on gradient-descen
timization of mean-square-error and relative-entropy obj
tive functions. The development is motivated by the theor
ical results@9–11# discussed in remark 2 of Sec. VI, an
especially by the expectation that, in practice, HOPP n
works trained by such algorithms will provide good es
mates of Bayesa posteriori probabilities. The derivations
proceed in close analogy with the formulation of standa
errorback-propagation training schemes@23–26#.

Having defined the HOPP network so that the activities
the output units form a complete set of probabilities over
exhaustive set of outcomes, it is possible to reduce the n
ber of output units by one:L→L21[L8. ~Implicitly or ex-
plicitly, this is frequently done in the literature@3,22,42#,
most commonly in the case where a single output unit is u
to represent a graded choice between two alternativ!
Elimination of one of the output units may be achieved
suitably renormalizing the weights~and biases! that enter the
expression~3! for the stimuliul(x) felt by the output units.
To this end, we divide the numerator and denominator of
~2! by exp@uL(x)#, bringing the activityyl(x) of output unit
l for input patternx into the form

yl~x!5
exp@ul~x!2uL~x!#

11 (
m51

L8

exp@um~x!2uL~x!#

, ~12!

where L85L21. The renormalized stimuliul(x)2uL(x)
are seen to retain the general form of Eq.~3!, and the differ-
ences wl,02wL,0 , wl,i2wL,i , wl,i j 2wL,i j , . . . ,
wl,12•••K2wL,12•••K with 1<l<L8 emerge as the only in
dependently adjustable parameters of the HOPP netw
The notation is simplified by redefiningwl,02wL,0 as
wl,0 , wl,i2wL,i aswl,i , wl,i j 2wL,i j aswl,i j , . . . , and
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wl,12•••K2wL,12•••K as wl,12•••K . The activities of output
units 1 throughL85L21 are then given by

yl~x!5
exp@ul~x!#

11 (
m51

L8

exp@um~x!#

, 1<l<L8. ~13!

The normalization condition for the probability distributio
$ym(x)u1<m<L% is invoked to determine the activity ass
ciated with the deleted output unit corresponding to the
maining categoryL:

yL~x!512 (
m51

L8

ym~x!. ~14!

In view of the proliferation of weights that may occur in
HOPP system, it is best to take advantage of the saving
fered by the above renormalization scheme, which is rig
ous and independent of problem domain. The num
of weight and bias parameters is reduced by a fac
(L21)/L or by a total of 2K parameters. One would like t
keep the number of parameters as small as possible for
reasons. First, the problem of determining optimal weig
and biases becomes more tractable computationally; and
ond, it is well known that the predictive capabilities of
network model are enhanced if the training data can be fi
with fewer parameters. We now proceed with the derivat
of HOPP learning rules based on the familiar strategy
stepwise minimization of the chosen objective function. T
following derivations are actually cast in terms of on-lin
rather than batch updating—i.e., weights and biases are
justed after each pattern presentation rather than after
pass through the training corpus~each ‘‘epoch’’!. Both op-
tions have been tried on the problem considered in Sec. V
and the ‘‘on-line’’ scheme was found to yield better resul

Let yl(x) denote the activity generated by the network
output nodel in response to input patternx, and lettl(x) be
the corresponding target activity. Then thepattern-specific
contribution to the objective function is

E~x!5s~x!5 (
l51

L

tl~x!lnF tl~x!

yl~x!G ~15!

when the relative-entropy prescription@22,38,26# is adopted
and

E~x!5e~x!5
1

2 (
l51

L

@ tl~x!2yl~x!#2 ~16!

for the mean-square error measure. The relative-entropy
function itself, denoted simply bys, is of course formed by
averaging Eq.~15! over all patternsx in the appropriate set
while the usual squared-error cost functione ~with the con-
ventional factor 1/2) is obtained in the same manner fr
Eq. ~16!. Making use of the normalization relation~14! and
the analogous relation satisfied by the target activitiestl(x),
the pattern-specific cost functions~15! and ~16! become
-
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s~x!5 (
l51

L8

tl~x!lnF tl~x!

yl~x!G
1tL~x!lnF tL~x!S 11 (

l51

L8

exp@ul~x!# D G ~17!

and

e~x!5
1

2 H (
l51

L8

@yl~x!2tl~x!#21S (
l51

L8

@yl~x!2tl~x!# D 2J .

~18!

It is to be noted that since the summations run only up
L85L21, only independent HOPP parameters are presen
these formulas. In the case of either objective function,
absolute minimum value of zero is reached if and only
yl(x)5tl(x) for all lP$1,2, . . . ,L%. A potentially impor-
tant difference between the behavior of the two cost fu
tions @24# is that the squared deviation~16! or ~18! saturates
at a finite value of unity in case one of the target activit
tl(x) is unity and the corresponding network responseyl(x)
is zero~or vice versa!, whereas the relative entropy~15! or
~17! tends to infinity for such extreme mismatches.

The usual gradient-descent minimization technique
adopted to derive learning rules based on the mean-squ
error and relative-entropy cost functions. Thus, the weig
and biases are to be incremented, after each pattern pre
tation, by an amount

Dwl~x!52e
]E~x!

]wl
, ~19!

whereE(x) is given by Eq.~17! or ~18! ande is a positive
learning rate, generally small compared to unity. F
economy of notation, we usewl as a generic symbol for the
weight of any connection, of any order, received by outp
unit l, or the bias parameter of that unit. It is of cour
convenient to regard the bias of a given unit as just ano
weight parameter—the weight of a connection to that u
from a fictitious ‘‘field’’ node 0 with perpetual activityx0
51. To suppress wild oscillations in weight space, we f
low the usual practice of supplementing the rule~19! by a
so-called momentum term

Dwl~x!52e
]E~x!

]wl
1hDwl~x21!, ~20!

the positive momentum parameterh also being taken less
than unity. In this expression,Dwl(x21) stands for the las
weight change made before the current one. Evaluation
the required partial derivatives leads to learning algorith
of the form

Dwl~x!5eDl~x!
]ul~x!

]wl
1hDwl~x21!, ~21!

whereDl(x) is interpreted as an error signal and depends
the cost function assumed.

For the relative-entropy cost function, the pattern-spec
error signal takes the very simple form
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Dl~x!5tl~x!2yl~x!, ~22!

while in the case of the squared deviation~18! it becomes

Dl~x!5yl~x!H tl~x!2yl~x!1 (
m51

L8

@ tm~x!2ym~x!#

3F12 (
n51

L8

yn~x!2ym~x!G J . ~23!

The linearity of the stimuli~3! in the adaptable weight pa
rameterswl has the consequence that the partial derivati
of ul(x) appearing in Eq.~21! do not depend on thes
weights, but only on the training patternx currently im-
pressed at the input interface of the network. In the cas
the bias parameterwl5wl,0 of nodel, the partial derivative
reduces to unity for any input pattern. Generally, the deri
tives ]ul(x)/]wl are given by the products of the activitie
in patternx, of the input units belonging to the one-un
two-unit, three-unit, etc. clusters extending feed-forwa
connections, of the pertinent order, to output unitl. Inde-
pendence of the weights may be exploited to facilitate co
putation: prior to a training run, one may calculate once a
for all the pattern-specific values of the activity products
the given set of training patterns and store these values i
array for use during the training process. We note that
binary inputs the derivatives can only assume the values
and unity.

From the expressions~22! and~23! it is seen that, in both
training algorithms considered here, the training proces
quenched as the actual network outputsyl(x) approach the
desired valuestl(x). However, the algorithm based on th
mean-square error may slow down or become stalem
@24# upon encountering cases where one of theyl(x) is 0 but
should be 1~or is 1 and should be 0). On the other hand,
the relative-entropy learning scheme the penalty for such
rors may be too severe@22#.

VIII. HOPP CLASSIFIERS FOR THE NUCLEAR
STABILITY-INSTABILITY DICHOTOMY

At the most fundamental level, the independent inp
variables characterizing atomic nuclei are the proton num
Z and the neutron numberN. It is currently impractical to
construct global quantum-mechanical models of nucli
properties as functions ofZ andN based on rigorous imple
mentation of quantum chromodynamics, and even semip
nomenological effective hadronic theories fall short of tr
quantitative description. Accordingly, artificial neural ne
works and other modern statistical methods offer interes
alternatives @18–22# to such fundamental physical ap
proaches to the prediction of nuclear structure and dynam

The efficacy and practicality of the HOPP architecture,
conjunction with the learning rules developed in Sec. V
have been tested on the problem of classifying nuclides
cording to the stability or instability of their ground state
As pointed out in Sec. II, this example is actually a det
ministic classification problem, whereas the HOPP sche
was formulated within the more general setting of proba
listic pattern classification. In principle, the inputs in th
example—Z and N—provide sufficient information for the
s
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stability or instability of the corresponding nuclide to be d
termined, and thea posterioriprobabilityP(lux) in this case
should collapse to a Kronecker deltadl,n(x) , wheren(x) is
the physical mapping that uniquely delivers a stability
instability assignment for givenZ,N. The latter mapping has
not yet been derived from fundamental considerations. I
accessible only as an empirical lookup table, and then o
under the assumption that there are no stable nuclides
yond those presently known. As in any exploration of t
capabilities of neural-network models in classification
function approximation, a primary aim is to test generaliz
tion performance. Accordingly, the standard protocol
quires the reservation of a subset of the data base as a
set, restricting the data available for training. One should
expect the ideala posteriori probability or the target map
ping to be realized in practice, for three reasons~see remarks
3 and 5 of Sec. VI!. First, although the HOPP architecture
flexible enough to represent an arbitrary posterior probab
distribution or deterministic mapping, computational limit
tions will necessitate a reduction in the number of weig
parameters employed and therefore in the connectivity of
model. Second, the training set may be too small and/o
may be subject to bias. This is expected to be the most s
ous obstacle in the present example. Third, the training p
cedures may not be adequate; specifically, the required m
mization of the chosen objective function may not
achieved. In the face of these uncertainties, the determin
problem we have selected at least has the virtue, in con
to most real-world problems of probabilistic character, th
the form of the posterior probability distribution isknown. It
is true that the nuclear stability-instability problem is a rath
academic one from a pragmatic viewpoint~unlike, say, the
problem of predicting ground-state spins of nuclei!. On the
other hand, its computational demands are relatively mod
and results@19–21# from earlier modeling studies with stan
dard multilayer neural networks are on hand for comparis

Most of the known nuclei~and presumably all of the un
known ones! are unstable. The data base for our compu
tional study, obtained from the National Nuclear Data Cen
at Brookhaven, is comprised of a total of 1557 nuclides,
which 215 are considered to be stable and 1305 are dem
strably unstable with respect to electron capture,b2 decay,
a emission, or other modes of decay. A test set of 312
clides was formed by randomly selecting 260 unstable
52 stable nuclides from the total data base. The remain
1245 nuclides constitute the training set. The distributions
training and test sets in theN-Z plane are shown in Figs. 1~a!
and 1~b!.

For this problem, it suffices to employ a single anal
output unit, whose activity signals the decision made by
network model regarding the stability or instability of th
input nuclide. Target activity valuest(x) of 1 and 0, respec-
tively, are assigned to stable and to unstable nuclides; imp
ing a winner-take-all criterion, it is assumed that the netwo
has classified the input nuclide as stable@unstable# if the
activity y(x) of the output unit is greater than@less than# 0.5.

In the case of a single-unit output layer, the error sig
~23! derived for the mean-square-error cost function may
reduced to

D~x!52y~x!@12y~x!#@ t~x!2y~x!#. ~24!
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Apart from an irrelevant factor 2, this result coincides w
the usual back-propagation formula for the error signal g
erated by the output unit@23–26#. Just as in the familiar
result, the producty(x)@12y(x)# is the derivative of the
output-unit squashing function with respect to the stimu
u(x) received by the output unit. In similar vein, it may b
noted that the learning rule~21!,~22! derived for the relative-
entropy cost function has the form of the Widrow-Hoff@41#
‘‘delta’’ learning rule, extended to allow for higher-orde
connections and including a momentum term.

As in most applications of neural networks to the mod
ing of nuclear systematics@17–22#, we adopt a binary rep
resentation of the inputsZ andN. Thus, the input layer of the
HOPP network models to be studied consists of eight on
units that encodeZ as a bit string and another eight on-o
units that similarly encodeN. In contrast to analog coding o
Z and N in the activities of one or more input nodes, th
binary coding scheme emphasizes the integral~quantal! char-
acter of the input variables@19,20# and hence provides
more natural framework for modeling effects of shell stru
ture and pairing@43#, effects which can be crucial in distin
guishing between stability and instability.

In addition to the squared error and relative entropy,
eraged over training or test patterns, we have also used
other quality measures to assess network performanc
learning and predictive modes. One is simply the number~or

FIG. 1. ~a! Training set of 1245 nuclides.~b! Test set of 312
nuclides.
-

s

-

ff

-

-
o
in

percentage! of correctly classified input patterns. Howeve
this measure can easily be misleading because of the
dominance of unstable examples in the training and test s
A ‘‘lazy’’ net that routinely classifiesall input nuclides as
unstable would achieve scores of 83.94% correctly classi
examples on the training set and 83.33% on the test
However, such apparently strong performance would o
indicate that the network has learned of the high likeliho
that an arbitrarily selected nuclide is unstable.

A much more informative quality measure is the Mathe
correlation coefficient@44#

C5
pp̄2qq̄

A~p1q!~ p̄1q!~p1q̄!~ p̄1q̄!
, ~25!

which is constructed to eliminate the effect of bias from fir
order frequencies. In this formula,p is the number of stable
input nuclides correctly classified as stable,p̄ the number of
unstable input nuclides correctly classified as unstable,q the
number of stable input nuclides incorrectly classified as
stable, andq̄ the number of unstable input nuclides inco
rectly classified as stable. The value of the coefficientC
ranges between21 and11, taking its minimum value of
21 when all patterns are misclassified and its maximum
ideal value11 when all patterns are correctly classified.
the case of a network model that assigns all patterns to
class ~e.g., unstable!, C vanishes, indicating trivial perfor-
mance.

The Mathews coefficient is computed independently
the training and test sets. Evidently,p1q is just the total
number of stables in the data set considered andp̄1q̄ is the
total number of unstables, so the Mathews coefficient is
effect a function only of the numberp of correctly identified
stables and the numberp̄ of correctly identified unstables
Figure 2 shows this functionC(p,p̄) for the training set.

In our modeling experiments, each training run compris
a prescribed number of epochs of exposure to the train
patterns. Since an on-line~or ‘‘stochastic’’! training proce-
dure is adopted, all four performance measures considere
mean-square error measuree, pattern-averaged relative en
tropy s, numberNcorr of correct classifications, and Mathew
coefficient Ctrain—will show fluctuations throughout the
training process. These quantities are monitored during e
training run and the sets of weights yielding the minimume,
minimum s, maximum Ncorr, and maximumCtrain are re-
corded. Generally, the HOPP network corresponding to
maximum Mathews coefficient found during a given run d
plays predictive performance superior to that of the netw
configuration reached on completion of the run.

As specified above, the HOPP architecture for the sta
ity discrimination problem consists of 16 input units and
single output node. Allowing for feed-forward connectio
of all orders, this structure entails(m50

16 (m
16)5216565536

adjustable weight parameters. Quite apart from the comp
tional demands of training this huge set of weights, there
little point in such an exercise. Far more parametric
sources are available than are needed to construct a loo
table that recapitulates the content of the training set. Thu
can be expected that one may readily arrive at netwo
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which fit the training data perfectly, yet fail in generalizin
to new patterns. This expectation is borne out by exp
ments in which the connectivity was truncated at orderm
53, i.e., experiments on HOPP networks with 697 adju
able parameters.~Connections of orderm53 are called
‘‘quaternary,’’ since they involve four neurons—three inp
neurons and one output neuron.! In several cases, training le
to a perfect fit of the training data, but performance on
test set was poor, with Mathews coefficients below 0.25.

Already atK516, one feels the effect of the combinator
explosion of parameters inherent in the HOPP architect
Some means must be found to preselect relevant con
tions, reducing the number of adjustable parameters t
level that permits good generalization on the basis of
limited training set available. The following strategy is qu
effective in the stability discrimination problem.

As was emphasized in Sec. III, the connection wei
wl,k1•••km

comes into play for a given input pattern if an

only if the input unitsk1•••km are all ‘‘on.’’ In the case of
bias parameters (m50) this condition is of course trivially
met for all training and test nuclides. More generally, f
each of the 65 536 possible connections one must coun
number of nuclides among the 1245 in the training set
which this connection is activated and therefore necess
While time consuming, this task need be done only once
a given data set. The next step is to reduce the numbe
couplings considered, by retaining only those which beco
active forat least Ncrit examples in the training set. In choo
ing the value ofNcrit , there is an inevitable tradeoff betwee
accuracy on the training set~arguing for smallNcrit) on the
one hand, and predictive accuracy and practicality of train
on the other~arguing for largerNcrit).

Table I shows the number of connections activated by
least one training example (Ncrit51), in each order fromm
50 to m516. As expected, this number first increases r
idly with increasing order, reaches a maximum at interme
ate order, and thereafter falls off very rapidly. The number
relevant parameters is immediately reduced to 12 435; h
ever, this number is still too large in comparison with t
available training set.

The best three HOPP ‘‘inference engines’’ we have fou
in our numerical explorations haveW5109, 127, and 143

FIG. 2. Mathews correlation coefficient~25!, for the training set,
as a function of the numberp50,1,2, . . . ,200 of correctly identi-

fied stables and of the numberp̄50,1,2, . . . ,1045 of correctly iden-
tified unstables.
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weights ~including biases!. These nets correspond, respe
tively, to values 200, 170, and 165 forNcrit . Tables II–IV
display, for each orderm listed, the number of connection
coming into action for at leastNcrit5200, Ncrit5170, and
Ncrit5165 nuclides in the training set. For values ofm higher
than those listed, there are no connections excited byNcrit or
more nuclides.

It is worth noting that this procedure for sculpting th
connectivity of HOPP networks permits one to include co
nections ofany order that satisfy the relevancy criterion o
activation by at leastNcrit training examples. The paramete
reduction strategy we have introduced is likely to have w
applicability.

Training a HOPP network with the numberW of relevant
weights began with the assignment of an initial value of z
to all of these weights.~Nets have also been trained by sta
ing with initial weights chosen randomly from a uniform
distribution on@20.5,0.5#, with no significant difference in
the quality of the models derived.! Each training run con-
sisted ofNmax536 000 epochs. Within an epoch, all nuclid
of the training set were presented in random order, the o

TABLE I. The number of connections for every order that com
into effect for at least one nuclide in the training set (Ncrit51). The
first column gives the numberm of input units feeding into the
output unit, the second the numberWm of connections of orderm
coming into action for at leastNcrit training examples, and the las
the total number of possible connections of the order specifie
the first column.

m Wm ~m
16!

0 1 1
1 15 16
2 103 120
3 424 560
4 1161 1820
5 2204 4368
6 2932 8008
7 2751 11440
8 1807 12870
9 793 11440
10 211 8008
11 31 4368
12 2 1820
13 0 560
14 0 120
15 0 16
16 0 1
Total 12 435 65 536

TABLE II. Same as in Table I forNcrit5200. The table is trun-
cated at the order above which no more connections come
effect for at leastNcrit training examples.

m Wm ~m
16!

0 1 1
1 14 16
2 89 120
3 5 560
Total 109 697
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of presentation being changed~randomly! from epoch to ep-
och. Weights were updated upon each pattern presenta
based on Eqs.~21! and ~22! when training on the relative
entropy and according to Eqs.~21! and~23! when training on
the mean-square error. However, to speed up the trai
process these weight changes were implemented if and
if the HOPP responsey(x) to input patternx, evaluated with
the current set of weights, departs from the correspond
target valuet(x) by an amount greater in magnitude than 0

About a hundred HOPP networks have been trained in
numerical investigations, in which we have explored the
fects of different choices for the relevancy cutoffNcrit , the
learning ratee, the momentum parameterh, and the maxi-
mum numberNmax of epochs per training run. Table V sum
marizes the properties of the best eight of these netw
models. We have seen that an exact fit of the training da
not useful in itself; thus ‘‘best’’ is to be understood in term
of the best performance on the test set, consistent with g
accuracy on the training set. These networks are identifie
number in the first column of the table. The second colu
gives the number of connections that remain after apply
the parameter reduction procedure described above, in c
spondence with the choices ofNcrit considered in Tables II–
IV. The entries in the third column indicate whether t
mean-square-error~MSE! or mean-relative-entropy~MRE!
cost function~CF! was adopted. The corresponding learni
ratese and momentum parametersh are listed in the fourth
and fifth columns, respectively.

The final configuration of any of the networks 1–8 was
fact reached through a succession of training runs of 36
epochs. For nets 1 and 4@2 and 6#, successive runs wer
started with the weights corresponding to the minimum va
of the mean relative entropy@mean-square error# achieved in
the immediately preceding run, while for nets 3, 5, 7, an
the initial weights for a subsequent run were taken as th
corresponding to the maximal Mathews coefficient found
the most recent training run. In the seventh column, we
for each network, the value of the Mathews coefficie
Ctrain. The number of epochsNbest at which this value was
obtained is given in column six, and the corresponding va

TABLE III. Same as in Table II forNcrit5170.

m Wm ~m
16!

0 1 1
1 14 16
2 90 120
3 22 560
Total 127 697

TABLE IV. Same as in Table II forNcrit5165.

m Wm ~m
16!

0 1 1
1 14 16
2 90 120
3 38 560
Total 143 697
ion
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of the Mathews coefficientCtest for the test set is listed in the
last column.

As already mentioned, the fully trained networks des
nated 1–8 have been singled out from all those studied
virtue of their superior predictive performance on t
stability-instability discrimination problem. The weight con
figurations of networks 1 and 4, 2 and 6, and 5, correspo
respectively, to the maximal Mathews coefficient, the mi
mal mean relative entropy, and the minimal mean-square
viation found in the last run of 36 000 training epochs. Sim
larly, the patterns of weights in nets 3, 7, and 8 are th
belonging to the maximal number of correctly identifie
training examples recorded in the final run. Further train
of the HOPP systems of Table V did not significantly im
prove their performance.

Network 5 represents a special case in which an atte
was made to eliminate further unimportant weight para
eters. The relevancy criterion based on the cutoff cho
Ncrit5165 yielded the same preselected HOPP architec
as for networks 4, 6, 7, and 8, all having 143 relevant c
nections~including biases!. Training led to an intermediate
network corresponding to the maximal Mathews correlat
coefficient obtained in the first 108 000 training epochs~oc-
curring at 100 894 epochs!. This network was pruned by th
following procedure. For each of the 143 connections,
Mathews coefficient for the training set was calculated w
the strength of that connection set to zero, leaving the o
weights unchanged. The connection whose omission resu
in the least deterioration in the Mathews coefficient was
leted. This process was in turn applied to the pruned n
work, and iterated until a total of ten connections were
moved. The reduced importance of the deleted weight
evident in their small magnitudes as well as their effect
Ctrain. The resulting HOPP architecture, with 133 nonvanis
ing weights, provided the initial configuration for the remai
ing 36 000 epochs of the training regimen.

A similar pruning strategy has been employed extensiv
in neural-network modeling of the atomic mass table@21#

TABLE V. Performance of the eight best HOPP classifiers
the nuclear stability-instability discrimination problem, found in
large set of numerical simulations. The networks labeled 1–8, h
ing W connections, were trained by modified on-line gradie
descent learning algorithms based on the mean-relative-ent
~MRE! or mean-square-error~MSE! cost function~CF!, with learn-
ing ratee and momentum parameterh. The Mathews correlation
coefficient obtained by each net for the training set (Ctrain) is given
along with the number of epochs at which this value was achie
(Nbest) and the corresponding Mathews coefficient on the test
(Ctest) . See text for further details.

W CF e h Nbest Ctrain Ctest

1 143 MRE 0.025 0.2 224 769 0.79 0.63
2 109 MSE 0.025 0.9 142 982 0.68 0.63
3 127 MSE 0.025 0.5 229 718 0.74 0.63
4 143 MRE 0.025 0.5 170 254 0.80 0.63
5 143~133! MSE 0.025 0.9 137 884 0.77 0.63
6 143 MSE 0.025 0.9 147 854 0.81 0.62
7 143 MRE 0.025 0.0 89 400 0.78 0.62
8 143 MSE 0.025 0.9 142 660 0.81 0.61
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and the systematics of nuclear decay@22#, where it resulted
in significant improvement in the quality of the statistic
models. In the present problem, further pruning of HO
networks preoptimized using the relevancy criterion usua
did not produce significantly better networks. Network 5
one of the rare cases where there was a noticeable impr
ment in performance.

The nuclear stability-instability discrimination proble
has been studied earlier using standard multilayer fe
forward nets with pairwise connections@19–21#. Among a
large number of models generated by training with gradie
descent back-propagation routines~batch as well as on-line!
and with a conjugate gradient algorithm, the best perf
mance was recorded by a network with a four-layer archit
ture 16191612 and 227 weight parameters. Again, bina
input coding was adopted; two analog output neurons co
for ‘‘stability’’ and ‘‘instability,’’ the discrimination decision
being made by a winner-take-all rule. This network, dev
oped by conjugate-gradient training, attained Mathews co
ficients ofCtrain50.87 andCtest50.68. The results collecte
in Table V show that HOPP networks are capable of com
rable performance, with substantially better parametric e
ciency. For example, network 6 has 143 parameters c
pared to 227 for the best multilayer network model. It m
also be noted that network 2, with only 109 weights, alm
matches the predictive performance of network 1, as m
sured byCtest. However, the additional weight paramete
possessed by network 1 result in significantly better learn
accuracy.

The range of relevancy parameters fromNcrit5200 to
Ncrit5165 was found to produce an acceptable tradeoff
tween accuracy of fit and predictive power. Within th
range, where the number of connections runs from 109
143, well-trained HOPP models show remarkably lit
spread inCtestvalues, although the details of connectivity a
quite variable from model to model. This robustness is c
sistent with the fact that there was generally little to
gained by attempts to improve upon the preselected con
tion pattern by the pruning routine. For relevancy-optimiz
architectures such as those of Tables II–IV it is not hard
construct HOPP networks with a predictive Mathews coe
cient close to 0.6. However, it has proven difficult to g
much beyond this value, either with the HOPP architectu
adopted or with the more conventional multilayer fee
forward architectures. This difficulty is a reflection of th
complexity of the distribution of stable and unstable nuclid
in the N-Z plane, where the stables intermingle with u
stables in an intricate pattern along the valley of stability i
sea of instability. Indicative of this complexity are the ve
long training times needed to create the networks of Table
It is of some interest to compare the present situation w
that encountered in an even more difficult classificat
problem, namely, that of predicting protein secondary str
ture from the primary amino acid sequence@28–30,3,45,46#.
It has been standard practice to treat this problem as on
probabilistic classification, supplying a multilayer, fee
forward, pairwise-coupled neural network with partial s
quence information passed through a sliding or jumping w
dow. Such approaches—as well as other statistical meth
based on sequence information alone—have not succe
y
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in yielding Mathews coefficients for alpha-helix predictio
significantly beyond about 0.4~see Refs.@3,30#!.

It seems most likely that the principal obstacle to im
proved performance on the stability-instability discrimin
tion problem is the limited size of the data set, which p
vents one from maintaining predictive accuracy up
reduction of the relevancy cutoffNcrit below the range con-
sidered for Tables II–IV. In this connection, we note that t
training procedures based on the relative-entropy
squared-error objective functions produced optimized n
works of essentially equivalent quality. Indeed, in ma
cases it was found that, within a given training run in the la
stages of development of the better networks, the we
configurations corresponding to the minimum mean relat
entropy and the minimum mean-square error were reac
after nearly the same number of completed epochs and
thus very close to one another. Such behavior, as well as
very similar performance of the best networks of HOPP a
standard multilayer type, suggests that the existing soluti
of the stability classification problem are about as good
can be expected, given the complexity of this problem a
the restricted nature of the data set. Even so, one cannot
out the existence of superior neural-network nuclear-stab
classifiers of one kind or another, which might be access
through the Bayesian techniques of model search develo
in Refs.@13,14# ~see remark 6 of Sec. VI!.

IX. CONCLUSIONS

We have studied a perceptron architecture for solv
classification problems that contains only input and out
layers but~i! allows for synaptic connections of all orde
consistent with the number of input units and~ii ! incorpo-
rates output-unit activation functions that collectively com
pute a probability distribution over an exhaustive set of o
comes. Assuming binary~two-state! input units, it has been
established that such higher-order probabilistic perceptr
~HOPPs! are sufficiently general to represent the correlatio
among the input variables and generate thea posterioriprob-
abilities given by a Bayes-optimal classifier. In addition, w
have developed supervised learning algorithms for train
HOPP networks on a set of correctly classified examp
with the goal of achieving optimal or near-optimal perfo
mance. The introduction of these algorithms, which emp
mean-square-error and relative-entropy objective functio
has its basis in theorems enunciated by Rucket al. @9# and
Richard and Lippmann@11#.

The HOPP architecture and associated learning rules h
been applied to the nontrivial task of deciding on the stabi
or instability of nuclear ground states. One putative dis
vantage of HOPP networks is poor scaling with proble
size, as measured by the dimensionality of the input spac
all possible connections are retained, there is a combinat
explosion of higher-order weight parameters as the num
of input variables is increased. We have sought to overco
this difficulty by imposing a relevancy criterion on the rete
tion of weight parameters: all connections that are not
cited by at leastNcrit training patterns are deleted. This stra
egy, aimed at improving parametric efficiency whi
preserving important higher-order correlations, may pro



nd
ty
ns
b

ar
nl
o
th

a
. I
b
o

e
ts
a

en
rc
l
-

t

tic
at
c
e
c

o-

y
ss
e

rb
l
he
ble
ap
its
ay
y
te
ce
in
ra

o
fo
a
P
iz

n-
is-

of
that
on-
ffi-
.3.

ec-

im-
ma-
ain
e

the
it

by
in

ess
za-
ce
ten
ork

at
in
ch-

er.
ic-

tein
to
ses
pins
l to

y,
dis-
an
to
,
ly
ents
ay.
n

able

ss
ets

e

PP
-

nce
the
lleg
an

PRE 59 6173HIGHER-ORDER PROBABILISTIC PERCEPTRONS AS . . .
useful in a wide range of classification problems. It is fou
that relevancy-optimized HOPP solutions for the stabili
instability discrimination task are competitive with solutio
obtained with conventional multilayer perceptrons trained
back-propagation and conjugate gradient procedures.

It should be emphasized that conventional feedforw
neural networks, with one or more hidden layers but o
biases and pairwise connections, may also suffer from p
scaling behavior. The danger is merely more apparent in
case of HOPP networks, whichstart with a ~finite! architec-
ture general enough to match the correlation structure of
problem with the specified numbers of inputs and outputs
practice, what really matters is the complexity of the pro
lem at hand, in terms of the pattern of the higher-order c
relations between input variables. In applying HOPP nets
large problems, the immediate need is to trim the archit
ture to suit the given problem. In the case of traditional ne
the existing complexity must be dealt with by introducing
sufficient number of hidden units, in one or more hidd
layers, again with the prospect of an explosion of resou
demands. Optimization of this architecture is in genera
very hard problem.@Indeed, even an infinite number of hid
den nodes may be required in a three-layer net~see Ref.
@12#!.# The HOPP architecture is an attractive alternative
that of traditional networks, in at least two respects.

~i! It provides a framework for efficient and systema
optimization strategies. A transparent option is to trunc
the expansion~3! at successively higher orders until satisfa
tory performance is attained, within the limitations of th
data set available. Optimization based on the relevancy
terion has the advantage that the most important links
expansion~3! may be selected regardless of order.

~ii ! With input units directly connected to outputs, it pr
vides for more straightforward~and more rapid! training of a
given number of weight parameters.

On the other hand, the absence of a hidden layer ma
construed to imply a sacrifice in parallel distributed proce
ing, a feature of multilayer networks that is commonly r
garded as highly advantageous@23#. Still, it must be remem-
bered that both HOPP and conventional architectures~the
latter with at least one hidden layer that can contain an a
trary number of units! provide the raw material for universa
machines. Whereas in HOPPs it is the presence of hig
order couplings that permit the description of all possi
correlations between input patterns, in conventional
proaches this responsibility falls on the set of hidden un
Formal relationships and correspondences between two-l
HOPPs and pairwise-coupled multilayer perceptrons are
to be explored, as are more practical issues such as sys
atic differences in parametric efficiency and fault toleran
For the illustrative problem studied in this paper, the exist
simulations suggest that the two approaches are compa
effective for the primary task of generalization.

Even for problems ofmodestsize, a large fraction of the
possible weight parameters must be eliminated if training
HOPP models is to be practicable and if acceptable per
mance in generalization is to be achieved with available d
sets. Thus, the viability of statistical modeling with HOP
networks depends on the convergence of proposed optim
tion strategies. Within this context, it is instructive to co
sider the correlation structure of the stability-instability d
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crimination problem in terms of the importance
connections of various orders. First, it should be recalled
the elementary perceptron with only biases and pairwise c
nections is inadequate, yielding Mathews correlation coe
cientsCtest on the test set of at best slightly larger than 0
Based on the relevancy criterion~as reflected in Tables II–
IV ! the training data indicate that the most important conn
tions for deciding stability are the binary~i.e., pairwise! and
ternary ones, the quaternary connections being far less
portant. Indeed, in our computer experiments, the great
jority of the ternary connections had to be retained to obt
good ~or ‘‘optimized’’ ! HOPP models. It is of course thes
ternary connections~along with a few quaternary links!
which introduce the nonlinearities that are represented in
multilayer structure of the traditional architecture and perm
Ctest to be raised above 0.6. The situation is exemplified
comparisons drawn from the experiments summarized
Table V. With 33 fewer quaternary connections and one l
ternary coupling, network 2 is almost as good in generali
tion as network 1. This illustrates the relative unimportan
of quaternary connections, as does the fact that of the
connections deemed least important when pruning netw
5, only two are ternary while eight are quaternary.

Our formal and computational findings suggest th
higher-order probabilistic perceptrons should be useful
many classification problems that arise in science and te
nology, whether probabilistic or deterministic in charact
Among scientific applications, one may consider the pred
tion of diverse aspects of protein structure related to pro
folding @45,46# and classification of compounds according
crystal structure, as well as further global modeling exerci
in nuclear physics such as assignment of ground-state s
and parities to novel nuclear species. As a natural seque
the present study of the stability-instability dichotom
HOPP systems may be taught to generate a probability
tribution over the possible fates of the ground state of
input nuclide, which may include stability and decay in
various modes (a decay, b decay, electron capture
fission, . . . ). Therelevant body of data, referring to near
1600 nuclear ground states, consists of stability assignm
or branching probabilities for the observed modes of dec
Although this problem is one of function approximatio
rather than simple classification, it is nevertheless amen
to HOPP modeling~see remark 4 of Sec. VI!. Moreover, it is
of considerable interest in view of the predictive succe
achieved with pairwise-coupled multilayer feedforward n
trained on the relative-entropy cost function@22#. The com-
plexity of the problem is expected to remain within th
bounds of practical computation, since the presence of~say!
five possible decay modes implies a number of initial HO
weights five times that of the stability-instability discrimina
tion task.
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